創薬のプロセスに動物実験は必要悪だ。マウス(ハツカネズミ)は特に人間に近いとはいえないものの、マウスを代替するものはないようにも思える。イスラエルを拠点とするQuris(クリス)は「チップ上の患者(複数のオルガノイドをリンクさせたシステム)」のデータとAIとを組み合わせて、マウスを必要としない新開発の本格的な方法で、低コストで極めて信頼性の高い試験と自動化を実現する、と主張している。
同社は、試験運用から実際の生産に移行するために900万ドル(約10億3000万円)を資金調達した。また、錚々(そうそう)たる後援者およびアドバイザーたちも、同社のアプローチが持つ利点を示す有望な指標となっている。
ベースとなるのは非常に理にかなったアイデアだ。これまで以上に優れた人体の小規模シミュレーションを構築し、それを使って機械学習システムが解釈しやすいデータを収集する。もちろん「言うは易し、行うは難し」だが、研究者たちのそんなアイデアを受けて、Qurisはすぐさまこれを実行に移した。
Qurisのアプローチは、ハーバード大学で行われた、いわゆる「organs on a chip(生体機能チップ)」の使用に関する大規模な研究に基づいている。まだ比較的新しいが、この分野ではすでに確立されたシステムで、少量の幹細胞から作られた組織(オルガノイド、臓器もどき)を薬や治療法の実験台として使用し、例えば人間の肝臓がある物質の組み合わせに対してどのように反応するかを調べることができる。
ハーバード大学では、複数の臓器(肝臓、腎臓、心臓の細胞など)の生体機能チップをリンクさせることで、驚くほど効果的に人体のシミュレーションが可能になるということが発見された。本物(の人体)にはかなわないとはいえ、複数のオルガノイドをリンクさせたシステム=「チップ上の患者」は、マウス実験に代わる真の手段となる可能性がある。というのも、マウスでの実験に合格した分子が人での実験に合格する確率は10%未満という事実にもかかわらず、マウスでの実験は未だに行われているからである。
Qurisの共同設立者でCEOのIsaac Bentwich(アイザック・ベントウィッチ)氏は、同氏と同僚はこの研究結果が発表された直後にこの研究が持つ将来性に気づき、実験的なシステムから規模を拡大するために、エンジニアリングとAIという点で何が必要かを考え始めたという。Qurisが取り組むのは単なるマウスの代替ではない。制約のある、人を使った実験を、人を使わずに、かつマウスの不確実性を排除して(比較的)安価に行う方法である。
ベントウィッチ氏はインタビューで次のように話す。「あなたが製薬会社だと仮定しましょう」「理論上では効果がありそうな分子があるとします。実際に効果があるかどうかを調べるのに、臨床試験を行う寸前まで待ちますか?ゲノム情報をいくら集めても、マウスの実験で失敗する確率は90%です。Qurisの手法があれば、レースに出る前にうまく機能する(しそうな)分子を選別することができるのです」。
医薬品候補が臨床段階に到達するまでに何百億円もの費用がかかることを考えると、失敗する(はずの)候補を除外するために、わずかな費用(数十億円程度)を費やす価値は十二分にある。手法が正確であれば(おそらく正確なはずだが)、リスクは実質的にゼロであり、高額を費やしながらも失敗する(はずの)医薬品候補を1つ除外するだけで元が取れる。ベントウィッチ氏によれば、要はソフトウェア産業における「Fail fast, fail cheap(損害の少ないうちにさっさと失敗しよう)」という考え方を、こういう考え方がまったく存在しなかった医薬品という領域に持ち込んだのだ。
Qurisのシステムでは、チップオンチップという技術を使用する。つまり、複数のオルガノイド(チップ)を並べて(別のチップ上に)配置するのだが、最新の研究室のシステムと比べてはるかに小さく、効率的である。ハーバード大学で行われた実験方法で100人分のオルガノイドを調査するには何億円もかかるが、Qurisのシステムでは100万円以下で済む。Qurisの自動システムには適切に訓練された機械学習モデルが採用され、使用する生体物質の量も少ないからだ。
機械学習モデルはQurisのもう1つの特徴である。実験を理解し、実験の実行と解釈をサポートするQuris独自のAIを機能させるには、同社だけのデータセットが欠かせない。同社のAIは、既存の医薬品や今後発売される医薬品の一部を学習済みで、物質の安全性にとってさまざまなセンサーからの信号がどのような意味を持つかを学習する。これにより(500匹のマウスの代わりに)一握りのチップで効果的な実験を行えるようになる。
チップ自体もすべて同じではない。幹細胞や組織を慎重に操作・選択することで、人のさまざまなタイプ、さまざまな状態や表現型を検査することができる。効果は十分だが10%の確率で副作用が起こる医薬品があり、その原因がわからないとしよう。自動化された環境で異なる遺伝的素質や複雑な要因に対するテストを行えば、どのような要素がその副作用を引き起こすのかを調べることができるかもしれない。
AIはこれらすべてを認識し、カタログ化しているので、比較的少数の自動テスト(数千ではなく数十のテスト、コストも数億円ではなく数十万円)で、その医薬品候補を臨床試験に持ち込めるかどうかを判断できるようになるはずだ。AIによる解釈がなければ、データの解析は(何種類もの博士号が必要なぐらいの)難しい問題になる。しかし、ベントウィッチ氏は、生物学的な側面を排除してAIだけに頼ることは決して想定できないとすぐに気づいたと言い「『AIは生物という相手と連携する必要がある』というのが、哲学、生物学という点での私たちの見解です」と話す。
科学諮問委員会に参加しているModerna(モデルナ)の共同設立者、Robert Langer(ロバート・ランガー)氏は、このTechCrunchのインタビューでベントウィッチ氏の見解に同意し、この技術はすぐに採用されるだろうが、(本質的に)保守的な大手製薬会社がどうするかはわからない、と予測している。
ランガー氏は次のように話す。「これは非常に大きなチャンスだと思います」「私は他の化学分野でも『AIを使ってこれらの予測を行うことができる』という類似のアイデアを持っています。(動物での、あるいは人での)試験に置き換わるものではありませんが、候補を絞ることで、プロセスを爆発的な速さで進めることができるだろうと思っています」。
ランガー氏やノーベル賞受賞者のAaron Ciechanover(アーロン・チカノーバー)氏のような人物を味方につけるのは良いことだが、ベントウィッチ氏は、Qurisのビジネスはランガー氏やチカノーバー氏の特許ポートフォリオとこの分野における優位性に依存している、と話す。Qurisはニューヨーク幹細胞財団と契約を締結し、財団の幹細胞ワークフローを特別に利用している。
このビジネスモデルには2つの柱がある。1つは、製薬会社に医薬品候補をスクリーニングするサービスを提供し、その結果が正確であると証明された場合(例えばQurisのシステムによって絞り込まれた医薬品が、予測通りに所定の試験をクリアした場合)に支払いを受け取るというものであり、もう1つは、自社の医薬品の開発だ。現在、同社は自閉症に関連する脆弱X症候群の治療薬を開発中で、来年には臨床試験を開始すると予定している。
ベントウィッチ氏は、AIを活用した創薬が急増し、投資が行われているにもかかわらず、自社の研究成果である分子が臨床試験に入ったといえる企業はほとんどない、と指摘する。この理由としては、たとえば企業が、特定の生物活性を持つ分子やその効率的な製造方法を公表するなどの主張を行っていないからではなく、(医薬品候補となる分子の)発見、試験、承認のプロセスには他にも時間のかかる多くのステップがあり、AIなどを利用することで以前よりは高くなったとはいえ、成功する確率はまだまだ低い、ということにある。
シードラウンドでの900万ドルの資金調達について、ベントウィッチ氏は「私たちの装置を製品化し、一層の効率化、自動化を図り、AIを訓練するために最初の100~1000種類の薬をテストするための資金として非常に有効です」と話す。プレスリリースによると、今回の資金調達ラウンドは「心血管治療のパイオニアであるJudith Richter(ジュディス・リヒター)博士とKobi Richter(コビ・リヒター)博士が主導し、データストレージの革新的技術の先駆者であるMoshe Yanai(モシェ・ヤナイ)氏と複数の戦略的エンジェル投資家が参加した」という。機関投資家からの投資が見当たらない点については読者の判断に委ねたい。
ベントウィッチ氏は、Qurisの未来を「完全にパーソナライズされた医療」という自身が持つ大まかな未来像の一部として捉えている。幹細胞のコストが下がり続ければ(数億円だったものがすでに数十万円に下がっている)、まったく新しい市場が開拓されるだろう。
「製薬会社が高価な実験をするだけという状況は変わるでしょう。5年後、10年後には、何億もの人々が創薬をしているかもしれません。考えてみれば、私たちの今の生活は、野蛮なものとも言えるのです」とベントウィッチ氏。「薬剤師は起こりうる可能性のある副作用を教えてくれますが、はっきりとしたことはわかりません。自分はモルモットだと思いませんか?私たちは全員がモルモットです。しかし、それこそがこの状況からの脱却の第一歩です」。
画像クレジット:Andrew Brookes / Getty Images
[原文へ]
(文:Devin Coldewey、翻訳:Dragonfly)