もっと詳しく

At its annual Architecture Day semiconductor event Thursday, Intel revealed new details about its powerful Ponte Vecchio chip for data centers, reports SiliconANGLE:

Intel is looking to take on Nvidia Corp. in the AI silicon market with Ponte Vecchio, which the company describes as its most complex system-on-chip or SOC to date. Ponte Vecchio features some 100 billion transistors, nearly twice as many as Nvidia’s flagship A100 data center graphics processing unit. The chip’s 100 billion transistors are divided among no fewer than 47 individual processing modules made using five different manufacturing processes. Normally, an SOC’s processing modules are arranged side by side in a flat two-dimensional design. Ponte Vecchio, however, stacks the modules on one another in a vertical, three-dimensional structure created using Intel’s Foveros technology.

The bulk of Ponte Vecchio’s processing power comes from a set of modules aptly called the Compute Tiles. Each Compute Tile has eight Xe cores, GPU cores specifically optimized to run AI workloads. Every Xe core, in turn, consists of eight vector engines and eight matrix engines, processing modules specifically built to run the narrow set of mathematical operations that AI models use to turn data into insights… Intel shared early performance data about the chip in conjunction with the release of the technical details. According to the company, early Ponte Vecchio silicon has demonstrated performance of more than 45 teraflops, or about 45 trillion operations per second.

The article adds that it achieved those speeds while processing 32-bit single-precision floating-point values floating point values — and that at least one customer has already signed up to use Ponte Vecchio.
The Argonne National Laboratory will include Ponte Vecchio chips in its upcoming $500 million Aurora supercomputer. Aurora will provide one exaflop of performance when it becomes fully operational, the equivalent of a quintillion calculations per second.

Read more of this story at Slashdot.