In a preprint posted online Thursday night, researchers at Google in collaboration with physicists at Stanford, Princeton and other universities say that they have used Google’s quantum computer to demonstrate a genuine “time crystal” for the first time. From a report: A novel phase of matter that physicists have strived to realize for many years, a time crystal is an object whose parts move in a regular, repeating cycle, sustaining this constant change without burning any energy. “The consequence is amazing: You evade the second law of thermodynamics,” said co-author Roderich Moessner, director of the Max Planck Institute for the Physics of Complex Systems in Dresden, Germany. That’s the law that says disorder always increases.
Time crystals are also the first objects to spontaneously break “time-translation symmetry,” the usual rule that a stable object will remain the same throughout time. A time crystal is both stable and ever-changing, with special moments that come at periodic intervals in time. The time crystal is a new category of phases of matter, expanding the definition of what a phase is. All other known phases, like water or ice, are in thermal equilibrium: Their constituent atoms have settled into the state with the lowest energy permitted by the ambient temperature, and their properties don’t change with time. The time crystal is the first “out-of-equilibrium” phase: It has order and perfect stability despite being in an excited and evolving state. “This is just this completely new and exciting space that we’re working in now,” said Vedika Khemani, a condensed matter physicist now at Stanford who co-discovered the novel phase while she was a graduate student and co-authored the new paper.
Read more of this story at Slashdot.