東北大学大学院理学研究科 助教の泉田渉氏は2022年1月5日、明治大学、仙台高等専門学校、東京大学、中国科学院大学とともに、電子の自転運動「スピン」を駆動力とするナノモーターを提案し、その駆動メカニズムに関する量子論を構 […]
The post 電子のスピンを駆動力とするナノモーターを提案し、量子論を構築 東北大学 first appeared on fabcross for エンジニア.
東北大学大学院理学研究科 助教の泉田渉氏は2022年1月5日、明治大学、仙台高等専門学校、東京大学、中国科学院大学とともに、電子の自転運動「スピン」を駆動力とするナノモーターを提案し、その駆動メカニズムに関する量子論を構 […]
The post 電子のスピンを駆動力とするナノモーターを提案し、量子論を構築 東北大学 first appeared on fabcross for エンジニア.
ニュートン以来、長きに渡って物理学が描いてきたのは、因果律に支配された決定論的な宇宙でした。
「現在が正確にわかっていれば、未来を予測できる」という、いわゆるラプラスの悪魔は、こうした古典物理学の常識を究極的に突き詰めていった場合に導かれる結論です。
しかしそれでは、波と粒子という異なる性質を同時に持った光や電子の振る舞いを説明することができません。
そこでボーアはこれまでの物理学の常識を覆し「物事の状態は観測によってはじめて決定される」、つまり「観測するまで物事の状態は決まっていない」というコペンハーゲン解釈を発表するのです。
「未来は決まっていない。あるのは可能性だけだ」というのは、少年漫画のオチみたいで素敵ですが、決定論と因果律を尊ぶ物理学者たちには受け入れがたいものでした。
特にアインシュタインは確率などに頼らず、明確に電子の状態を決定できる隠されたパラメータが存在するはずだと考えました。
例えばAとBの2つの箱があり、片方にだけボールが入っているとします。このときAの箱の中は、蓋を開けようと開けまいと、ボールが「ある」か「ない」かの2つに1つです。
それに対して明言を避けて「Aの中にボールがある確率は50%だ」と言われたら、単にわかんないから確率で誤魔化してるだけじゃないかと言いたくなりますよね。
アインシュタインが指摘したいのはそういうことでした。
彼にとって確率に頼るというのは、わからないから白旗をあげていることに等しかったのです。
そのためアインシュタインは、量子力学が不完全な理論であることを証明しようと、次から次へ思考実験を考案してボーアに戦いを挑みました。
現在私たちがよく知る量子力学の解説の多くは、実はアインシュタインたちが量子力学を否定するために生みだした思考実験が元ネタです。
ここからは、馴染みのある量子力学の話しが数多く登場します。
目次 アインシュタインは量子力学の何が気に入らなかったのか?コペンハーゲン解釈を否定するために生まれた「シュレーディンガーの猫」哲学の決着 ベルの定…
参考文献
量子革命: アインシュタインとボーア、偉大なる頭脳の激突 (新潮文庫)
https://www.amazon.co.jp/exec/obidos/ASIN/4102200819/nazology-22/ref=nosim/
光や電子という、世界の根源的な存在に目を向けたとき、それは粒子と波動という一見矛盾した2つの性質を同時に成り立たせていることがわかってきました。
しかし、古典物理学ではその振る舞いを説明することができません。
放射線や線スペクトルの問題から、物理学者たちは原子の内部がどんな構造になっているかに興味の対象を広げていきました。
しかし、原子の内部構造を考え始めると、原子核やその周りに存在する電子の振る舞いは、やはり古典物理学では成立させることができませんでした。
ニュートン以来、世界を支配する盤石な学問だった物理学は、ここで大きな壁にぶつかったのです。
物理学者たちはもはや、使い慣れた古典物理学には別れを告げ、新しい事実に対応した新理論を作るしかなかったのです。
しかしこうして生まれた量子力学には、さまざまな奇妙な性質がありました。
「物事は確率でしかわからない」「観測するまで物事の状態は確定しない」という不可思議な理屈や、「シュレーディンガーの猫」と呼ばれる哀れな猫の思考実験、そしてアインシュタインの「神はサイコロを振らない」という言葉。
そんな誰もが聞き慣れた不思議な量子力学の議論はすべて、エルヴィン・シュレーディンガーの波動方程式が登場してから、その解釈を巡って始まります。
そして、この問題は、共に量子力学の誕生に貢献してきたアインシュタインとボーアを対立させ、議論を戦わせる原因になるのです。
彼らは量子力学の何を受け入れ、何を拒んだのでしょうか?
目次 2つの量子力学シュレーディンガー方程式は一体何を計算しているのか?それは存在確率の波ハイゼンベルクの不確定性原理コペンハーゲン解釈 2つの量子…
参考文献
量子革命: アインシュタインとボーア、偉大なる頭脳の激突 (新潮文庫)
https://www.amazon.co.jp/exec/obidos/ASIN/4102200819/nazology-22/ref=nosim/
歴史で学ぶ量子力学【改訂版・1】
歴史で学ぶ量子力学【改訂版・2】※本記事
歴史で学ぶ量子力学【改訂版・3】
歴史で学ぶ量子力学【改訂版・4】
20世紀のはじめ、第一次大戦が終りを迎えた頃、物理学は光の「波動説」と「粒子説」の2つの間で揺れていました。
光が矛盾するどちらの性質でも成立してしまったために、皆が困惑していたのです。
1922年、アーサー・コンプトンがコンプトン効果を発見したことで、光の粒子性は決定的なものになっていました。
コンプトン効果とは、電子にX線をぶつけたとき、弾かれて散乱したX線の波長が伸びるという現象のことです。
波長が伸びるということは、X線が電子にぶつかってエネルギー(運動量)を失ったことを意味しています。
しかし波は運動量を持ちません。
この現象を説明するためには、X線が実は粒子であり、ビリヤードの玉のように電子にぶつかって運動量を奪われたと解釈するしかないのです。
こうして、この時代の物理学者たちは、月曜と水曜と金曜は光の波動論を教え、火曜と木曜と土曜は光の粒子論を教えなければならない、と冗談交じりに愚痴るような状況になりました。
それは目で見て頭でイメージできる馴染み深い古典物理学の世界が、崩壊したことを意味していましたが、まだこのとき多くの物理学者たちはその事実を受け入れることができなかったのです。
目次 物質の全ては波パウリの排他原理誰もノーベル賞をもらえなかった電子スピン理論もう一人の天才 ハイゼンベルク 物質の全ては波 物理学の常識では同時…
参考文献
量子革命: アインシュタインとボーア、偉大なる頭脳の激突 (新潮文庫)
https://www.amazon.co.jp/exec/obidos/ASIN/4102200819/nazology-22/ref=nosim/
量子力学が難解な学問という認識は、誰もが抱いているでしょう。
では、なぜ量子力学は難しいのでしょう?
その理由は、量子力学が本来は頭の中でイメージできるような概念を持っていないためです。
とはいえ、量子力学に関するさまざまな図解やたとえ話は、誰でも一度は目にしたことがあると思います。
しかし、実のところ、それらはすべて厳密には正しくないのです。
物理学とは、ニュートンからはじまり、目に見える現象の数々を説明する学問として発展してきました。
ところが、あるときこの理論が崩れ去り、既存の理論では一切説明のつかない事実が次々と発見されたのです。
それはたとえば、光が波として性質と、粒子としての性質どちらでも成立してしまう、というような問題です。
これは頭でイメージしようとしても(あるいは図に描こうとしても)、思い描くことが不可能です。
そのため、物理学者たちはこのイメージできない新しい理論を「量子力学」と呼び、これまでの物理学(古典力学)と切り離しました。
しかし、物理学者も私たちも(数学者を除き)、何が起きているのかイメージできない問題を考えることは非常に不得意で、あまり好きではありません。
そこで、物理学者たちは、馴染み深い古典力学の概念を使って、なんとか量子力学の現象を可視化しようと試みました。
これが私たちのよく知る、量子力学の図説になったのです。
つまり私たちが知っている量子力学に関する説明は、すべて、本来はまったく異なる概念である、古典力学によって無理やり描き出したイメージなのです。
そのため、同じ量子力学の問題でも、解説してる本やサイト、人物によって、全然説明の仕方や解釈が異なってしまう場合もあります。
物理学者たちは、こうした問題をきちんと自覚した上で、うまく利用していますが、私たちはこの事実を理解していないため、頭がこんがらがってしまうのです。
これからはじめる量子力学のお話しも、できる限り視覚的なイメージを交えて解説していきますが、それはあくまで古典力学に置き換えた場合のイメージであって、正しい姿ではないのだということに注意してください。
量子力学はすべて、本来はイメージすることが不可能な問題であることを念頭におきながら見ていけば、多少は量子力学の理不尽な説明にも納得できるかもしれません。
目次 量子の発見波? 粒子? 浮上した2重性の問題物理学を揺るがしたもう一つの問題 「原子の中身」コペンハーゲン学派の開祖 ニールス・ボーアの登場 …
参考文献
量子革命: アインシュタインとボーア、偉大なる頭脳の激突 (新潮文庫)
http://www.amazon.co.jp/exec/obidos/ASIN/4102200819/nazology-22/ref=nosim/
クマムシが量子的なもつれ状態になったようです。
シンガポールの南洋理工大学で行われた研究によれば、クマムシを極低温の量子ビット回路に組み込んだところ、クマムシにも量子世界に特有の、観察するまでは状態が確定しない「量子もつれ」に移行した、とのこと。
クマムシは絶対零度に近いマイナス272℃から水の沸点を上回る150℃までの温度を生き延び、宇宙空間でも10日間が生存可能と異常な能力が知られていますが、どうやら量子的な能力を獲得することも可能なようです。
研究内容の詳細は12月16日にプレプリントサーバーである『arXiv』にて公開されています。
目次 クマムシを「量子もつれ」状態にすることに成功! 実験後も生還死んで凍った死体で試しても面白くない クマムシを「量子もつれ」状態にすることに成功…
元論文
Entanglement between superconducting qubits and a tardigrade
https://arxiv.org/pdf/2112.07978.pdf
「将来は物理学者になる!」その思いを何十年も胸に秘め、ついに89歳のManfred Steiner氏は物理学の博士号を獲得した。一度は物理学の道を諦めたものの、70歳で定年を迎えた時に「ゴルフばかりしている人生は想像でき […]
The post いくつになっても夢を諦めないで――89歳で物理学博士となった研究者の物語 first appeared on fabcross for エンジニア.
通常、私たちは原子にぶつかった光(光子)が散乱し、目に届くことで物質を見ることができます。
ところがMITのある研究者は30年前に、原子を超低温状態で、隙間なく高密度に配置したとき、光子がぶつかったエネルギーを散乱させる余地がなくなるため、原子が透明化するという予想をしていました。
そして今回、MITの研究チームはレーザーを使った超低温技術で実験を行い、実際に原子が光の散乱を38%も低下させるのを確認したと報告しています。
チームの考えでは、完全な絶対零度を実現できた場合には、原子は完全に光を散乱できなくなって見えなくなるといいます。
この研究の詳細は、11月18日付で、科学雑誌『Science』に掲載されています。
目次 満席状態のスタジアム原子の透明化 満席状態のスタジアム 量子力学には「パウリの排他原理」という理論があります。 これは簡単にいうなら、電子には…
参考文献
How ultracold, superdense atoms become invisible
https://news.mit.edu/2021/atoms-ultracold-scatter-light-1118
MIT Physicists Use Fundamental Atomic Property To Turn Matter Invisible
https://scitechdaily.com/mit-physicists-use-fundamental-atomic-property-to-turn-matter-invisible/
元論文
Pauli blocking of light scattering in degenerate fermions
https://www.science.org/doi/10.1126/science.abi6153